10 research outputs found

    Generating Labels for Regression of Subjective Constructs using Triplet Embeddings

    Full text link
    Human annotations serve an important role in computational models where the target constructs under study are hidden, such as dimensions of affect. This is especially relevant in machine learning, where subjective labels derived from related observable signals (e.g., audio, video, text) are needed to support model training and testing. Current research trends focus on correcting artifacts and biases introduced by annotators during the annotation process while fusing them into a single annotation. In this work, we propose a novel annotation approach using triplet embeddings. By lifting the absolute annotation process to relative annotations where the annotator compares individual target constructs in triplets, we leverage the accuracy of comparisons over absolute ratings by human annotators. We then build a 1-dimensional embedding in Euclidean space that is indexed in time and serves as a label for regression. In this setting, the annotation fusion occurs naturally as a union of sets of sampled triplet comparisons among different annotators. We show that by using our proposed sampling method to find an embedding, we are able to accurately represent synthetic hidden constructs in time under noisy sampling conditions. We further validate this approach using human annotations collected from Mechanical Turk and show that we can recover the underlying structure of the hidden construct up to bias and scaling factors.Comment: 9 pages, 5 figures, accepted journal pape

    Bluetooth based Indoor Localization using Triplet Embeddings

    No full text
    International audienceWe propose a novel algorithm for indoor localization using triplet embeddings through Bluetooth connectivity streams obtained in very noisy settings with irregular sampling schemes using environmental sensors distributed ad hoc inside buildings. We pose the problem as a matrix completion problem, where a single row and column is added to the (noisy) distances matrix of sensors. Since this is an underdetermined problem, we use information from connectivity between the sender and the trackers to find the missing distances with the help of triplet comparisons. We test our algorithm in a busy hospital setting, where locations such as patient rooms, intensive care units and nursing stations have been equipped with Bluetooth track-ers, that are capable of sending Bluetooth packets as well. We assign the sender role to three different trackers, and estimate their locations. We achieve a mean error of 4.01m in indoor localization for three different senders

    Generating Labels for Regression of Subjective Constructs using Triplet Embeddings

    No full text
    International audienceHuman annotations serve an important role in computational models where the target constructs under study are hidden, such as dimensions of affect. This is especially relevant in machine learning, where subjective labels derived from related observable signals (e.g., audio, video, text) are needed to support model training and testing. Current research trends focus on correcting artifacts and biases introduced by annotators during the annotation process while fusing them into a single annotation. In this work, we propose a novel annotation approach using triplet embeddings. By replacing the absolute annotation process to relative annotations where the annotator compares individual target constructs in triplets, we leverage the accuracy of comparisons over absolute ratings by human annotators. We then build a 1-dimensional embedding in Euclidean space that is indexed in time and serves as a label for regression. In this setting, the annotation fusion occurs naturally as a union of sets of sampled triplet comparisons among different annotators. We show that by using our proposed sampling method to find an embedding, we are able to accurately represent synthetic hidden constructs in time under noisy sampling conditions. We further validate this approach using human annotations collected from Mechanical Turk and show that we can recover the underlying structure of the hidden construct up to bias and scaling factors

    TILES-2019: A longitudinal physiologic and behavioral data set of medical residents in an intensive care unit

    No full text
    International audienceThe TILES-2019 data set consists of behavioral and physiological data gathered from 57 medical residents (i.e., trainees) working in an intensive care unit (ICU) in the United States. The data set allows for the exploration of longitudinal changes in well-being, teamwork, and job performance in a demanding environment, as residents worked in the ICU for three weeks. Residents wore a Fitbit, a Bluetooth-based proximity sensor, and an audio-feature recorder. They completed daily surveys and interviews at the beginning and end of their rotation. In addition, we collected data from environmental sensors (i.e., Internet-of-Things Bluetooth data hubs) and obtained hospital records (e.g., patient census) and residents' job evaluations. This data set may be may be of interest to researchers interested in workplace stress, group dynamics, social support, the physical and psychological effects of witnessing patient deaths, predicting survey data from sensors, and privacy-aware and privacypreserving machine learning. Notably, a small subset of the data was collected during the first wave of the COVID-19 pandemic

    TILES-2018: A longitudinal physiologic and behavioral data set of hospital workers

    No full text
    International audienceWe present a novel longitudinal multimodal corpus of physiological and behavioral data collected from direct clinical providers in a hospital workplace. We designed the study to investigate the use of off-the-shelf wearable and environmental sensors to understand individual-specific constructs such as job performance, interpersonal interaction, and well-being of hospital workers over time in their natural day-to-day job settings. We collected behavioral and physiological data from n=212 participants through Internet-of-Things Bluetooth data hubs, wearable sensors (including a wristband, a biometrics-tracking garment, a smartphone, and an audio-feature recorder), together with a battery of surveys to assess personality traits, behavioral states, job performance, and well-being over time. Besides the default use of the data set, we envision several novel research opportunities and potential applications, including multi-modal and multi-task behavioral modeling, authentication through biometrics, and privacy-aware and privacy-preserving machine learning
    corecore